Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Infect Dis ; 22(1): 483, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1902359

ABSTRACT

BACKGROUND: Contact patterns play a key role in the spread of respiratory infectious diseases in human populations. During the COVID-19 pandemic, the regular contact patterns of the population have been disrupted due to social distancing both imposed by the authorities and individual choices. Many studies have focused on age-mixing patterns before the COVID-19 pandemic, but they provide very little information about the mixing patterns in the COVID-19 era. In this study, we aim at quantifying human heterogeneous mixing patterns immediately after lockdowns implemented to contain COVID-19 spread in China were lifted. We also provide an illustrative example of how the collected mixing patterns can be used in a simulation study of SARS-CoV-2 transmission. METHODS AND RESULTS: In this work, a contact survey was conducted in Chinese provinces outside Hubei in March 2020, right after lockdowns were lifted. We then leveraged the estimated mixing patterns to calibrate a mathematical model of SARS-CoV-2 transmission. Study participants reported 2.3 contacts per day (IQR: 1.0-3.0) and the mean per-contact duration was 7.0 h (IQR: 1.0-10.0). No significant differences in average contact number and contact duration were observed between provinces, the number of recorded contacts did not show a clear trend by age, and most of the recorded contacts occurred with family members (about 78%). The simulation study highlights the importance of considering age-specific contact patterns to estimate the COVID-19 burden. CONCLUSIONS: Our findings suggest that, despite lockdowns were no longer in place at the time of the survey, people were still heavily limiting their contacts as compared to the pre-pandemic situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics , Physical Distancing
2.
PLoS Comput Biol ; 16(12): e1008467, 2020 12.
Article in English | MEDLINE | ID: covidwho-999796

ABSTRACT

In January 2020, a COVID-19 outbreak was detected in Sichuan Province of China. Six weeks later, the outbreak was successfully contained. The aim of this work is to characterize the epidemiology of the Sichuan outbreak and estimate the impact of interventions in limiting SARS-CoV-2 transmission. We analyzed patient records for all laboratory-confirmed cases reported in the province for the period of January 21 to March 16, 2020. To estimate the basic and daily reproduction numbers, we used a Bayesian framework. In addition, we estimated the number of cases averted by the implemented control strategies. The outbreak resulted in 539 confirmed cases, lasted less than two months, and no further local transmission was detected after February 27. The median age of local cases was 8 years older than that of imported cases. We estimated R0 at 2.4 (95% CI: 1.6-3.7). The epidemic was self-sustained for about 3 weeks before going below the epidemic threshold 3 days after the declaration of a public health emergency by Sichuan authorities. Our findings indicate that, were the control measures be adopted four weeks later, the epidemic could have lasted 49 days longer (95% CI: 31-68 days), causing 9,216 more cases (95% CI: 1,317-25,545).


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks , COVID-19/virology , China/epidemiology , Female , Humans , Male , SARS-CoV-2/isolation & purification
3.
J Evid Based Med ; 13(1): 3-7, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-707

ABSTRACT

OBJECTIVES: To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). METHODS: Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infectious cases with symptoms occurred before 26 January, 2020 are resulted from free propagation without intervention, we estimate the basic reproduction number of 2019-nCoV according to the reported confirmed cases and suspected cases, as well as the theoretical estimated number of infected cases by other research teams, together with some epidemiological determinants learned from the severe acute respiratory syndrome (SARS). RESULTS: The basic reproduction number fall between 2.8 and 3.3 by using the real-time reports on the number of 2019-nCoV-infected cases from People's Daily in China and fall between 3.2 and 3.9 on the basis of the predicted number of infected cases from international colleagues. CONCLUSIONS: The early transmission ability of 2019-nCoV is close to or slightly higher than SARS. It is a controllable disease with moderate to high transmissibility. Timely and effective control measures are needed to prevent the further transmissions.


Subject(s)
Basic Reproduction Number , Betacoronavirus , Coronavirus Infections , Pneumonia, Viral , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Forecasting , Humans , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL